Customer guidelines for Next-Generation Sequencing

General Information

The following document will guide you through the process of how to submit your project. Please go through the provided information carefully and do not hesitate to contact our staff if you have further questions. The contact details are located in the following document for either the Institute for Human Genetics or the Institute of Microbiology. All the best for your analysis!

Hazardous Materials
Before sending any material to the NCCT, it has to be checked for potentially posing a risk to laboratory personnel and if the material falls under a laboratory safety-level. Such materials have to be announced to the NCCT’s associated project manager and need to be approved before shipment. Hazardous and safety-level materials have to be clearly indicated by labelling the corresponding samples. The omission of indication of hazardous materials with consequential health endangering effects is punishable by law. Please pay particular attention to the guidelines for hazardous materials of the NCCT Human genetics and NCCT Microbiology. You will submit your samples to either one and be provided with the according guidelines.

Genetically modified organisms
German Law requires the documentation of the generation, transport and usage of genetically modified organisms (GMO) which present a risk of proliferation. To comply with the governmental regulation, the NCCT needs to document all GMOs received, stored and manipulated in our laboratory which present a risk of proliferation. Fixed GMOs, which do not present a risk of proliferation, do not require detailed documentation. The documentation of GMO presenting a risk of proliferation is attached to this document as ANNEX 1: documentation of GMOs.

Patent and ethical concerns
We do not take any responsibility concerning patent or ethical approval and assume that the user is authorised to request our services.
Format of transferred data
The sequencing facilities transfer by default FastQ files, the purpose of these files is to keep the information concerning sequencing quality as complete as possible. Access to instrument raw data (BCL files in the case of Illumina sequencing, FAST5s for Nanopore sequencing…) is generally not possible and requires special consulting.

For projects requiring access to raw data, experimental design and sequencing strategy need to be considered prior to the start of the project. Consulting will be performed to estimate costs related to the additional data transfer. We recommend using a single flow cell to ensure the feasibility of raw data transfer.

Batching and prioritising
All samples that are compared to one another should be run together through the different stages of processing. Please inform the associated project manager and indicate in the metadata-sheet which samples should be processed within one batch. If you submit many samples organised in different batches, you can indicate the priority of processing by the order in which your samples appear in the metadata-sheet. Without concrete and specific instructions, the NCCT is not responsible for any potential batch effect.

Nucleic Acid Isolation
We recommend sending extracted nucleic acids, especially if you have successfully established extraction methods for your materials. The success of extraction depends on compatibility of the extraction protocol and the starting material. We use a variety of commercial extraction kits and cannot guarantee best results for all kinds of different starting materials. All DNA and RNA samples (either sent by you or after isolation at our facility) will go through a standardised quality control protocol. This comprises a precise quantitation using a fluorescence method (such as Qubit), an assessment of the RNA/DNA quality (DIN/RIN on an electrophoresis capillary such as Bioanalyzer2100 or FragmentAnalyzer), and eventually an assessment of possible contaminants via photometry (Nanodrop). Preserving reagents, like RNAlater, should only be used if unavoidable and cannot replace appropriate handling. These reagents might interfere with our sample handling and have to be indicated in the metadata sheet.

Metadata sheet
All samples have to be documented in a metadata sheet, which has to be sent with the samples as a printout and also sent in digital form. Depending on the application, different metadata sheets can be acquired via www.ncct.life or upon request at ncct@med.uni-tuebingen.de. It should also be indicated, if samples have been treated with DNase or RNase if they are supplemented with preserving reagents, such as RNAlater.

Sample labelling, choice of container and transport conditions
All tubes and plates have to be labelled clearly with a sample ID, date and the customer’s name. Keep the labelling as simple as possible and only use letters, numbers, dashes and underscores. For batches smaller than 20 samples, we recommend the use of nuclease-free, Safe-Lock, DNA-free, PCR-clean, LoBind 1.5 ml tubes. We do not handle tubes smaller than 1.5 ml as storage and labelling is problematic. For batches larger than 20 samples, use 96- or 384-well LoBind-plates. We require at least 15 µl volume of the samples of which at least 5 µl are needed for quality control measurements.
Please dilute high concentrated samples to volumes above 15 µl with the buffer used for sample elution. Tubes and plates and water (for elution) should not be autoclaved.

Double sealing of the samples has to be performed to avoid potential leak. This is commonly done using a zip bag, seal bag or 2 tubes.

RNA and DNA for short-read sequencing should be shipped on dry ice. DNA for long-read sequencing can be sent at 4°C. DNA for long-read sequencing, samples which have already been frozen and samples meant for epigenetic analysis, should be shipped on dry ice.

**Couriers and shipment conditions**

The samples can be brought to the laboratory directly. In this case, propose a time slot to the laboratory using the ticket system to make sure a coworker will be available to make the sample entry.

Rigid outer packaging is needed for transport; the packaging needs to be labelled with proper shipping name, if possible printed from an electronic document. Shipper (or consignee identification) is also needed. Avoid reusing commercial packages as they might be confusing for the laboratory team, indeed there is a risk that samples packaged in a carton box from goods which are normally stored at room temperature (such as cartons containing gloves) might not be unpacked immediately.

We recommend selecting a courier with a warranty of delivery time such as TNT, UPS, GLH, Fedex, or similar services. In case of unique samples, sensitive to temperature, a custom courier such as world courier is recommended as they allow personalised tracking solution, but are more expensive. Shipment costs need to be covered by the user, using the invoicing courier ID of the user.

Samples sent on dry ice have to fulfil specific requirements. The recommended quantity of dry ice depends on the size of the package and of the ambient temperature. Couriers like UPS recommend 5 kg per day and other couriers like world courier have a refilling service for dry ice.

**For international shipment**

When declaring the samples to the tax office, consider if the samples have a commercial value. If there is no clear IP, most of the biological material do not have a commercial value (good of 0.1 $). If the samples have a commercial value, 19% VAT applies to all samples coming in Germany. Usually biological samples have the import reference: 3001 2010. Please validate that it applies to your samples (sender responsibility).
NCCT shipping guidelines for hazardous materials

This section is relevant to you because you plan to submit libraries or pools for sequencing.

A) Shipping address for library pools being sequenced on the Illumina NovaSeq6000, NovaSeqX, MGI G400, PacBio Sequel II, or NanoPore PromethION for eukaryotic samples:

   **Note:** The NCCT Human Genetics laboratory does NOT accept genetically modified organisms (GMO) or organisms above the safety-level S1.

B) Shipping address for library pools being sequenced on the Illumina NextSeq500, Illumina MiSeq, NanoPore MiniION or NanoPore PromethION for microbiological samples:

   **Note:** The NCCT Microbiology laboratory does accept S1 and S2 safety-level materials. Both types of materials have to be clearly announced to the corresponding project manager.
Libraries and ready-to-sequence pools

This section covers important aspects of how to plan and ship libraries or pools for sequencing at the NCCT.

If you have experience in library-pooling and can ensure that the frozen pools are stable for at least four weeks, we recommend pooling in your own facility. Store the individual libraries and perform the pooling shortly before sequencing. Also provide your accessed quality parameters in the metadata sheet. It is best to access as many quality parameters of your libraries or pools in your own lab, in order to avoid submitting samples that are not suitable for sequencing. We recommend fluorescence-based methods for concentration assessment and capillary-electrophoresis for fragment length determination. Commercial kits based on qPCR are also advisable.

Please submit at least 20 µl of a ready-to-sequence pool. Individual library volumes vary among protocols and depending on the success of the library preparation may be the bottleneck for pooling. If you have over 40 µl of a ready to sequence pool, we recommend only sending half of your libraries or pools since they could get damaged or lost on their way to the NCCT. Keep in mind that for all submitted pools and libraries, we will access the concentrations and fragment sizes, requiring approximately 5 µl of the submitted total volume.

In order to avoid unnecessary freeze-and-thaw cycles, we recommend doing the library quality assessment, pooling and pool quality assessment in quick direct succession. This reduces the risk of index hopping. Also please make sure that the libraries or pools do not contain any fragments below 200 nts.

If you do not have experience on pooling samples, we recommend sending us >20µl of the original libraries. We will perform the library quality control and propose a pooling strategy based on your input. A consulting will be necessary at the end of the quality control to finalize the strategy. Pooling samples has an additional cost when compared to shipment of ready to sequence pools.

<table>
<thead>
<tr>
<th>Application</th>
<th>Required volume</th>
<th>Required molarity</th>
<th>Fragment length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library Pools</td>
<td>&gt; 20 µl</td>
<td>&gt; 10 nM</td>
<td>&lt;900 nt</td>
</tr>
<tr>
<td>10x Library Pools</td>
<td>&gt; 20 µl</td>
<td>&gt; 20 nM</td>
<td>&lt; 600 nt</td>
</tr>
</tbody>
</table>
**General Libraries (Illumina-Compatible)**

Sample indexing enables the sequencing of different libraries within one pool. Depending on the number of sequences added to your sample sequences, you either generate single-indexed libraries or dual-indexed libraries. Indices used for dual-indexed libraries are either combinatorial dual indices or unique dual indices. Any kind of index sequence used for your samples has to be stated in the metadata sheet. We **recommend using unique dual indices** that are compatible with Illumina standard sequencing primers. If your project is incompatible with standard Illumina sequencing primers, please send the custom primers (> 20 µl) with your samples. Also indicate the primer name, sequence and concentration in the metadata sheet. We cannot assure optimal performance for custom indexed libraries.

**10x Libraries / Pools for single cell sequencing**

10x ready-to-sequence pools must be at least 20 nM. Please note that we will always run a full flow cell per project, as the sequencing mode is customized for 10x libraries and is not compatible with other library types. Please contact us for further information, especially if you have questions regarding library pooling.

**Using a flow cell single lane**

On the Illumina NovaSeq 6000, flow-cells have either two sequencing lanes (for SP, S1 and S2) or four sequencing lanes (for S4). Sequencing lanes are independent and can be loaded independently. Loading independent flow cells can be achieved using the “XP workflow” which needs to be purchased additionally to the flow cell, and thus represent an extra cost. This workflow allows using more samples per run as the indexing is independent for each lane. This workflow also requires less volume of the final library to be loaded. Finally, the XP workflow uses capillary effects instead of the instrument microfluidics. This protocol allows a less reproducible loading of the flow-cell and usually results in an output lower than the usual flow-cell specification. In the case that the wanted output is below the capacity of all the lanes available on the flow cell, the turnaround time of the data delivery will be higher than usual, as a complementary library needs to be sequenced on the remaining lane(s).
**ANNEX 1: documentation of GMOs**

Formblatt für Core Facilities zur Aufzeichnung von GVO der Risikogruppe 1, die von einem anderen Betreiber kommen (nicht-fixierte GVO)

**Risikobewertung des gentechnisch veränderten Organismus**
(Für jeden GVO ist ein separates Formblatt auszufüllen)

Kundennname: ____________________________________________

Auftrags Nr.: ____________________________________________

Kontakt E-Mail: __________________________________________

Bitte senden Sie uns *(Core Facility)* das vollständig ausgefüllte Formular **vor der Zusendung** Ihrer Proben zu, damit wir die Sicherheitsstufe Ihres GVO vorab überprüfen können. Wir können **nur mit vollständig ausgefülltem und unterzeichnetem Formular** den Service ausführen.

1) **Spenderorganismus** *(Spender ist der Organismus, aus dem das zu übertragende Nukleinsäurefragment ursprünglich stammt, ggf. sind mehrere Spenderorganismen anzugeben):*

Bezeichnung *(z. B. Mensch, Maus, Qualle):*
________________________________________________________________________

**Risikogruppe des Spenderorganismus:** RG 1 ☐  RG 2 ☐  RG 3 ☐  RG 4 ☐

Einstufung erfolgte gemäß: ZKBS-Liste¹ ☐  TRBA-Listen² ☐  eigene Einstufung ☐

2) **Informationsgehalt der klonierten Nukleinsäure** *(Kurzbeschreibung der Funktion des klonierten Nukleinsäureabschnittes bzw. Gen/Genfragmentes):*

Bezeichnung *(z.B. humanes Insulin-Gen, Green Fluorescent Protein (GFP), handelt es sich um ein Onkogen?):*
________________________________________________________________________

3) **Empfängerorganismus:**

Bezeichnung *(z. B. E. coli DH10B):*
________________________________________________________________________

**Risikogruppe des Empfängerorganismus:** RG 1 ☐  RG 2 ☐  RG 3 ☐  RG 4 ☐

Einstufung erfolgte gemäß: ZKBS-Liste¹ ☐  TRBA-Listen² ☐  eigene Einstufung ☐

4) **Vektor** *(auch bei Standardvektoren genaue Bezeichnung angeben; falls kein Standardvektor lt. Vektor-Liste der ZKBS, bitte VEKTORKARTE - soweit verfügbar - anfügen, siehe:*

Standard-Vektor (nach ZKBS): ja ☐  nein ☐

Bezeichnung *(z. B. pcDNA3):*
________________________________________________________________________

---

¹ Zentrale Kontrollstelle für Biosecurity (ZKBS)
² TRBA: Transplantaions- und Regenerationsbiologie Autorisierung
5) Gentechnisch veränderter Organismus

Bezeichnung des GVO (z. B. lentiviral transduzierte Zelllinie xy):

____________________________________________________________

Risikogruppe des GVO:  RG 1 ☐  RG 2 ☐

Begründung für die Einstufung (zungend erforderlich):
(z. B. die Zelllinie ist nachweislich frei von den zur Transduktion verwendeten lentiviralen Viruspartikeln und wird deshalb in die Risikogruppe 1 eingestuft, Gene ohne Gefährdungspotenzial).

____________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

___________________________
Name und Unterschrift Auftraggeber/-in:

(Datum / Name in Blockschrift / Unterschrift)

___________________________
Name und Unterschrift Projektleiter/-in:

(Datum / Name in Blockschrift / Unterschrift)

Nach Abschluss der Arbeiten:

☐ Gentechnisch veränderte Organismen wurden in das externe Labor zurückgebracht.

___________________________  ___________________________  ___________________________
Datum  Name  Unterschrift Auftraggeber/-in

☐ Gentechnisch veränderte Organismen wurden vernichtet.

___________________________  ___________________________  ___________________________
Datum  Name  Unterschrift Projektleiter/-in

¹ZKBS: Datenbank zu sicherheitsbewerteten Organismen
https://zag.bvl.bund.de/organismen/index.jsf?dswid=8714&duserid=969

²Technische Regeln für Biologische Arbeitsstoffe (z. B. TRBA 460 Pilze, TRBA 462 Viren, TRBA 464 Parasiten, TRBA 466 Bakterien, TRBA 468 Zelllinien)
**Zusammensetzung der gentechnisch veränderten Organismen (GVO):**

Anlage zur gentechnischen Arbeit (Az. bzw. Projekt-Nr.): ..................................................

<table>
<thead>
<tr>
<th>Spenderorganismus (Organismus, aus dem die verwendete Nukleinsäure ursprünglich stammt)</th>
<th>Insert (übertragener Nukleinsäureabschnitt)</th>
<th>Vektor</th>
<th>Empfängerorganismus (GVO)</th>
<th>Gentechnisch veränderter Organismus (GVO)</th>
<th>Weitere Infos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>RG</td>
<td>Abk. Vollständiger Name, Funktion¹, Gefährdungspotenzial</td>
<td>Name</td>
<td>RG</td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ z.B. Transkriptionsfaktor, Onkogen, Toxin, Gen kodiert für das Protein ...